Geometric Data Structures
Data Structure

Definition: A *data structure* is a particular way of organizing and storing data in a computer for efficient search and retrieval, including associated algorithms to perform search, update, and related operations on the data structure.
Elmar Langetepe, Gabriel Zachmann
Geometric Data Structures for Computer Graphics

Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars
Computational Geometry: Algorithms and Applications
Hanan Samet
Foundations of Multidimensional and Metric Data Structures
Morgan Kaufmann, 2006. 1024 pages.

Dinesh P. Mehta, Sartaj Sahni
Handbook of Data Structures and Applications
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
Introduction to Algorithms 3rd ed.
MIT Press, 2009

Robert Sedgewick
Addison-Wesley, 1998.
Kurt Mehlhorn
Data Structures and Algorithms 1: Sorting and Searching

Kurt Mehlhorn
Data Structures and Algorithms 3: Multi-Dimensional Searching and Computational Geometry

Rolf Klein
Algorithmische Geometrie 2nd ed.

Franco Preparata, Michael Shamos
Computational Geometry. An Introduction
Michael Goodrich, Roberto Tamassia
Algorithm Design.
Foundations, Analysis and Internet Examples

Thomas Ottmann, Peter Widmayer
Algorithmen und Datenstrukturen 4th ed.
Spektrum, 2002.
Definition: An abstract data type is a set of data values and associated operations that are precisely specified independent of any particular implementation.
Abstract Data Type

Definition: An *abstract data type* is a set of data values and associated operations that are precisely specified independent of any particular implementation.

A data structure is an actual implementation of an abstract data type.
Dictionary

Abstract data type *dictionary* maintains a subset S of a universe U under the operations

- $\text{INSERT}(x)$
- $\text{DELETE}(x)$
- $\text{SEARCH}(x)$

alternative names: $\text{LOOKUP}(x)$, $\text{RETRIEVE}(x)$, $\text{FIND}(x)$

This data type is also called *set*.

Ordered Dictionary

Abstract data type *ordered dictionary* maintains a subset S of an ordered universe U under the operations

- $\text{INSERT}(x)$
- $\text{DELETE}(x)$
- $\text{SEARCH}(x)$
- $\text{PREDECESSOR}(x)$
- $\text{SUCCESSOR}(x)$

This data type is also called *ordered set*.
Order-Statistics Dictionary

Abstract data type *order-statistics dictionary* maintains a subset S of an ordered universe U under the operations

- **Insert**(x)
- **Delete**(x)
- **Search**(x)
- **Rank**(x)
- **Select**(k)

Rank(x) computes the rank of x in S, i.e., $|\{s \in S : s \leq x\}|$.

Select(k) computes the k-th smallest element in S.

This data type is also called *dynamic order-statistics set*.
Monotone Priority Queue

Abstract data type *priority queue* maintains a subset S of an ordered universe U under the operations

- **Insert**(x)
- **Delete-Min**()
Priority Queue

Abstract data type *priority queue* maintains a set of pairs of items and keys from an ordered universe U under the operations

- **Insert**(x, key)
- **Delete-Min**(\cdot)
- **Decrease-Key**(x, key)
Application:

Dijkstra’s algorithm for single source shortest paths:

\textsc{Dijkstra}(G(V, E), s)

1 \hspace{1em} \textbf{for each} \ v \in V
2 \hspace{0.5em} \textbf{do} \ d[v] \leftarrow \infty
3 \hspace{1em} Q.\textsc{Insert}(v, d[v])
4 \hspace{1em} Q.\textsc{Decrease-key}(s, 0)
5 \hspace{0.5em} \textbf{while} \ Q \text{ is not empty}
6 \hspace{1em} \textbf{do} \ u \leftarrow Q.\textsc{Delete-min}()
7 \hspace{1em} \textbf{for each} \ \text{neighbor} \ w \ \text{of} \ u
8 \hspace{1em} \textbf{do if} \ d[u] + \text{dist}(u, w) < d[w]
9 \hspace{1em} \textbf{then} \ d[w] \leftarrow d[u] + \text{dist}(u, w)
10 \hspace{0.5em} Q.\textsc{Decrease-key}(w, d[w])
Disjoint Set

A *disjoint-set data structure* maintains a partition under the operations

- \textbf{FIND}(x)
- \textbf{UNION}(x, y)

This data type is also called *union-find data structure.*
Planar Point Location

A planar subdivision is a partitioning of the plane into vertices, edges, and faces. In the planar point location problem we are given a planar subdivision S and a query point q and the task is to find the vertex or edge or face containing $q = (q_x, q_y)$.
Klee’s Measure Problem

Given a collection of intervals, what is the length of their union?
Klee’s Measure Problem

Given a collection of intervals, what is the length of their union?

Given a collection of axis-aligned rectangles, what is the area of their union?
Range Queries

Given a set S of n points in \mathbb{R}^d and a family \mathcal{R} of subspaces of \mathbb{R}^d. Elements of \mathcal{R} are called ranges. Report or count all elements in S intersecting a given query range. \mathcal{R} is called range space.
orthogonal range searching

simplex range searching

orthogonal range searching

halfspace range searching
Stabbing Queries

Given a set S of subsets of \mathbb{R}^d. Report or count all elements in S intersected by a given query object, e.g. a point or a line (segment).
Interval Overlap

Maintain a set of closed intervals

\[I = \{ [x_1, x'_1], [x_2, x'_2], \ldots, [x_n, x'_n] \} \]

such that an emptiness stabbing query with a closed interval

\[[q, q'] \]

can be answered quickly.
Interval Overlap

Maintain a set of closed intervals

\[I = \{ [x_1, x'_1], [x_2, x'_2], \ldots, [x_n, x'_n] \} \]

such that an emptiness stabbing query with a closed interval

\[[q, q'] \]

can be answered quickly. Remember, we want to check whether any of the intervals in \(I \) overlaps \([q, q']\).
Six cases:
Application:

Intersection detection of axis-parallel rectangles using plane-sweep

“Sweep” a horizontal line from top to bottom. Maintain the intersection intervals of the rectangles and the sweep line in a data structure appropriate for interval overlap queries. Check for overlap at the upper sides of the rectangles.
Sweep line reaches an upper side:

\[\text{OVERLAP}(I) \]

\[\text{INSERT}(I) \]
Sweep line reaches a lower side:

\[
\text{DELETE}(I)
\]
Binary Tree

Definition: A *binary tree* contains exactly one external node or is comprised of three disjoint sets of nodes: An internal node \(v \) called *root* node, a binary tree called its *left subtree* and a binary tree called its *right subtree*.

If \(w \) is a (left or right) child of \(u \), the node \(u \) is called the *parent* of \(w \).
Binary Tree

Definition: A *binary tree* contains exactly one external node or is comprised of three disjoint sets of nodes: An internal node v called *root* node, a binary tree called its *left subtree* and a binary tree called its *right subtree*. A binary tree without internal nodes is called *empty*.
Binary Tree

Definition: A *binary tree* contains exactly one external node or is comprised of three disjoint sets of nodes: An internal node v called *root* node, a binary tree called its *left subtree* and a binary tree called its *right subtree*. A binary tree without internal nodes is called *empty*. If the left subtree is nonempty, its root is called the *left child* of v. Likewise, if the right subtree is nonempty, its root is called the *right child* of v.
Binary Tree

Definition: A binary tree contains exactly one external node or is comprised of three disjoint sets of nodes: An internal node v called root node, a binary tree called its left subtree and a binary tree called its right subtree. A binary tree without internal nodes is called empty. If the left subtree is nonempty, its root is called the left child of v. Likewise, if the right subtree is nonempty, its root is called the right child of v. An internal node without children is a leaf.
Binary Tree

Definition: A binary tree contains exactly one external node or is comprised of three disjoint sets of nodes: An internal node \(v \) called root node, a binary tree called its left subtree and a binary tree called its right subtree. A binary tree without internal nodes is called empty. If the left subtree is nonempty, its root is called the left child of \(v \). Likewise, if the right subtree is nonempty, its root is called the right child of \(v \). An internal node without children is a leaf. If \(w \) is a (left or right) child of \(u \), the node \(u \) is called the parent of \(w \).
Binary Tree

Definition: A binary tree contains exactly one external node or is comprised of three disjoint sets of nodes: An internal node \(v \) called *root* node, a binary tree called its *left subtree* and a binary tree called its *right subtree*. A binary tree without internal nodes is called *empty*. If the left subtree is nonempty, its root is called the *left child* of \(v \). Likewise, if the right subtree is nonempty, its root is called the *right child* of \(v \). An internal node without children is a *leaf*. If \(w \) is a (left or right) child of \(u \), the node \(u \) is called the *parent* of \(w \).

Examples:
[Source: Sedgewick; *Algorithmen in Java*. © Pearson Education]
Definition: The *height* of a node v in a binary tree is the length of the longest path from v to a leaf.
Definition: The *height* of a node \(v \) in a binary tree is the length of the longest path from \(v \) to a leaf. The height of a binary tree \(T \) is the height of the root of \(T \).
Definition: The *height* of a node \(v \) in a binary tree is the length of the longest path from \(v \) to a leaf. The height of a binary tree \(T \) is the height of the root of \(T \).

Definition: The *depth* of a node \(v \) in a binary tree \(T \) is the length of the path form the root of \(T \) to \(v \).
Definition: The *height* of a node v in a binary tree is the length of the longest path from v to a leaf. The height of a binary tree T is the height of the root of T.

Definition: The *depth* of a node v in a binary tree T is the length of the path from the root of T to v.

Definition: A node v in a binary tree is an *ancestor* of a node w if w belongs to the set of nodes of one of v’s children.
Definition: A *binary search tree* is a binary tree that has a key K associated to each internal node such that the keys of the nodes in the left subtree are smaller than K and the keys of the nodes in the right subtree are larger than K.

[Source: Sedgewick; *Algorithmen in Java.* ©Pearson Education]
Binary Search Tree

Definition: A *binary search tree* is a binary tree that has a key K associated to each internal node such that the keys of the nodes in the left subtree are smaller than K and the keys of the nodes in the right subtree are larger than K.

![Binary Search Tree Diagram]

Binary search trees implement the abstract data type ordered dictionary.
Search

To search for key K, start at the root and walk down the tree. Use the key K_v of the current node v to navigate through the tree: If $K = K_v$, we are done. If $K < K_v$, go to the left subtree, if $K > K_v$ go to the right subtree. In the figure on the right we search for key H.
Search

To search for key K, start at the root and walk down the tree. Use the key K_v of the current node v to navigate through the tree: If $K = K_v$, we are done. If $K < K_v$, go to the left subtree, if $K > K_v$ go to the right subtree. In the figure on the right we search for key H.

Lemma:
Searching for a key in a binary search tree of height h takes time $O(h)$.

Here and in the sequel we assume that comparing keys takes constant time.
To insert a key K, we search for K as described above. If we find K, we are done. Otherwise, the search will end in an external node. We replace the external node by a new internal node v and associate K with v. In the figure on the right we insert key M.
To insert a key K, we search for K as described above. If we find K, we are done. Otherwise, the search will end in an external node. We replace the external node by a new internal node v and associate K with v. In the figure on the right we insert key M.

Lemma:
Insertion of a key in a binary search tree of height h takes time $O(h)$.

[Source: Sedgewick; *Algorithmen in Java*. © Pearson Education]
DELETE

To delete a key K, we search for K as described above. If we do not find K, we are done. Otherwise, let v_K be the node containing K. If v_K has at most one child, we remove v_K. If there is a child v_c, we make v_c a child of v_K’s parent. Otherwise, if v_K has two children, we search for K’s successor, i.e., for the leftmost internal node v_l in v_K’s right subtree. Node v_l has at most one child! We exchange the keys of v_K and v_l and remove v_l (handling the child as described above, if any). In the figure we delete key E. The key of the leftmost internal node in the right subtree is G.

[Source: Sedgewick; *Algorithmen in Java*. ©Pearson Education]
To delete a key K, we search for K as described above. If we do not find K, we are done. Otherwise, let v_K be the node containing K. If v_K has at most one child, we remove v_K. If there is a child v_c, we make v_c a child of v_K’s parent. Otherwise, if v_K has two children, we search for K’s successor, i.e., for the leftmost internal node v_l in v_K’s right subtree. Node v_l has at most one child! We exchange the keys of v_K and v_l and remove v_l (handling the child as described above, if any). In the figure we delete key E. The key of the leftmost internal node in the right subtree is G.

Lemma:
Deletion of a key in a binary search tree of height h takes time $O(h)$.

[Source: Sedgewick; *Algorithmen in Java*. ©Pearson Education]
Insertion
That's it.
Lemma:
The worst-case height of a binary search tree for n keys is $\Theta(n)$.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
<th>Worst-case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>$O(n)$</td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>$O(n)$</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>$O(n)$</td>
<td></td>
</tr>
</tbody>
</table>

[Source: Sedgewick; *Algorithmen in Java*. © Pearson Education]
Balanced Binary Search Trees

Definition: A node \(v \) in an binary search tree \(T \) is \(\alpha \)-weight-balanced, for some \(\frac{1}{2} \leq \alpha < 1 \), if

\[
\text{size}(lc[v]) \leq \alpha \cdot \text{size}(v) \tag{1}
\]
\[
\text{size}(rc[v]) \leq \alpha \cdot \text{size}(v) \tag{2}
\]

Here and later on, \(lc(v) \) and \(rc(v) \) denote the left and right child of a node \(v \), respectively.
Balanced Binary Search Trees

Definition: A node v in an binary search tree T is α-weight-balanced, for some $\frac{1}{2} \leq \alpha < 1$, if

$$\text{size}(lc[v]) \leq \alpha \cdot \text{size}(v) \quad (1)$$

$$\text{size}(rc[v]) \leq \alpha \cdot \text{size}(v) \quad (2)$$

Here and later on, $lc(v)$ and $rc(v)$ denote the left and right child of a node v, respectively.

Definition: A binary search tree T is α-weight-balanced if all nodes in T are α-weight-balanced.
Balanced Binary Search Trees

Definition: A node \(v \) in an binary search tree \(T \) is \(\alpha \)-weight-balanced, for some \(\frac{1}{2} \leq \alpha < 1 \), if

\[
\begin{align*}
\text{size}(lc[v]) & \leq \alpha \cdot \text{size}(v) \\
\text{size}(rc[v]) & \leq \alpha \cdot \text{size}(v)
\end{align*}
\]

(1)

Here and later on, \(lc(v) \) and \(rc(v) \) denote the left and right child of a node \(v \), respectively.

Definition: A binary search tree \(T \) is \(\alpha \)-weight-balanced if all nodes in \(T \) are \(\alpha \)-weight-balanced.

Definition: A binary search tree \(T \) of size \(n \) is \(\alpha \)-height-balanced if

\[
h(T) \leq \lceil \log_{(1/\alpha)} n \rceil =: h_\alpha(n)
\]

(3)
[Source: Sedgewick; *Algorithmen in Java*. ©Pearson Education]
Rotation

You can restructure a tree using rotations as illustrated below. Rotations preserve the ordering of the keys associated with the nodes.
Right Rotation
Right Rotation

Left Rotation

[Source: Sedgewick; *Algorithmen in Java*. ©Pearson Education]