
QoX-Driven ETL Design: Reducing the Cost
of ETL Consulting Engagements

Alkis Simitsis
HP Labs

Palo Alto, Ca, USA
alkis@hp.com

Kevin Wilkinson
HP Labs

Palo Alto, Ca, USA
kevin.wilkinson@hp.com

Malu Castellanos
HP Labs

Palo Alto, Ca, USA
malu.castellanos@hp.com

Umeshwar Dayal
HP Labs

Palo Alto, Ca, USA
umeshwar.dayal@hp.com

ABSTRACT
As business intelligence becomes increasingly essential for organ-
izations and as it evolves from strategic to operational, the com-
plexity of Extract-Transform-Load (ETL) processes grows. In
consequence, ETL engagements have become very time consum-
ing, labor intensive, and costly. At the same time, additional re-
quirements besides functionality and performance need to be
considered in the design of ETL processes. In particular, the de-
sign quality needs to be determined by an intricate combination of
different metrics like reliability, maintenance, scalability, and
others. Unfortunately, there are no methodologies, modeling lan-
guages or tools to support ETL design in a systematic, formal way
for achieving these quality requirements. The current practice
handles them with ad-hoc approaches only based on designers’
experience. This results in either poor designs that do not meet the
quality objectives or costly engagements that require several itera-
tions to meet them. A fundamental shift that uses automation in
the ETL design task is the only way to reduce the cost of these
engagements while obtaining optimal designs. Towards this goal,
we present a novel approach to ETL design that incorporates a
suite of quality metrics, termed QoX, at all stages of the design
process. We discuss the challenges and tradeoffs among QoX
metrics and illustrate their impact on alternative designs.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Data warehouse and reposito-
ry.

General Terms
Management, Performance, Design, Reliability, Experimentation.

Keywords
ETL, Data Warehouses, Metrics, QoX, Quality, Modeling.

1. INTRODUCTION
The backstage of the Data Warehouse architecture consists of
Extract-Transform-Load (ETL) processes. ETL processes are
responsible for extracting data from distributed and often hetero-
geneous sources, cleaning and transforming that data according to

business requirements, and finally, loading it to the data ware-
house. ETL design and implementation constitutes 70% (by some
estimates) of the effort in data warehousing projects, and today is
offered as a time-consuming, labor-intensive consulting service.
Apart from the fact that these projects are expensive, ETL is the
critical path from business events (at the data sources) to business
analysis and action (at the warehouse). Thus, delays in ETL en-
gagements directly affect business operational effectiveness.
There are strong motivations for making ETL engagements less
expensive and faster.

The lifecycle of a typical ETL engagement begins with the ga-
thering of business and technology requirements. The business
requirements specify information needs and service level objec-
tives like overall cost, latency between operational event and
warehouse load, provenance needs, and so on. The technology
requirements specify the details of data sources and targets, trans-
formations, infrastructure, dependencies and constraints on ex-
tracts and loads, and system availability. These requirements are
synthesized into specifications that are combined to form a high-
level conceptual design. This is followed by the construction of
logical and physical models to capture the data flows from opera-
tional systems to a data warehouse. The final step is to express the
physical model in an implementation language such as SQL, a
scripting language or some ETL engine (e.g., Ab Initio, DataStage
or Informatica).

In current commercial and research solutions, the focus for ETL is
on correct functionality and adequate performance, i.e., the func-
tional mappings from data sources to warehouse must be correct
and the ETL runs must complete within a certain time window.
Correctness and performance are important objectives. However,
expert consultants and practitioners, who have broad and deep
experience in ETL, have observed that in real-world projects ad-
ditional objectives are important as well. As one practitioner said:
“If I wanted better performance, I would ask for better hardware;
unfortunately, I cannot buy a more maintainable or a more relia-
ble system.”

In fact, nowadays ETL designers do deal with a host of quality
objectives besides performance, including reliability, recoverabili-
ty, maintainability, freshness, scalability, availability, flexibility,
robustness, affordability, and auditability. However, the modeling
languages and ETL tools neither capture such quality objectives
nor provide a formal mechanism to quantify, track, and measure
them. Consequently, they are dealt with informally based on the
best practices and experience of the ETL designer. Hence, in the
translation from the high-level business and technical require-
ments to detailed ETL specifications, objectives may be dropped.
This makes the final implementation sub-optimal with respect to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.
"© ACM, (2009). This is the author's version of the work. It is posted here by per-
mission of ACM for your personal use. Not for redistribution. The definitive version
was published in SIGMOD 2009, http://doi.acm.org/10.1145/1559845.1559954"

the project objectives. Correcting for this adds time, cost, and
complexity to the engagement. Our goal is to reduce the time and
cost of ETL engagements by facilitating the generation of optimal
ETL designs that incorporate all of its objectives.

As an aside, we observe that as enterprises become more auto-
mated, data-driven, and real-time, Business Intelligence architec-
tures are evolving to support operational decision-making. This
imposes additional needs for next-generation ETL which include:
a larger number and diversity of data sources and data types (less
structured content, external data feeds, and streaming data), real
time decision making, fast refresh cycles, more complex analytic
and reporting tools, 24x7 availability, and so on. With these in-
creasing demands on data warehouses, ETL design has become
even more complex.

Consequently, we feel it is time to take a fresh, comprehensive
look at ETL, or more generally, the problem of data integration
flow design and implementation. We propose a novel, more com-
prehensive approach to ETL that considers additional quality
metrics besides performance. We refer to these collectively as
QoX. The QoX metric suite is incorporated at all stages of the
design process, from high-level specifications to implementation.
A major challenge is to identify the interrelationships and depen-
dencies among the quality metrics that lead to tradeoffs for alter-
native optimizations of ETL processes. Another major challenge
is to automate the optimization process. Hence, a systematic ap-
proach to ETL design based on QoX benefits the designer, im-
plementer, and administrator.

We note that our approach applies not just to new integration
projects. As is often the case in outsourcing, designers may be
asked to evaluate or modify an existing ETL workflow for new
requirements, sources, hardware, and so on. The techniques we
describe here are just as applicable in understanding and improv-
ing pre-existing ETL as to new projects.

In the rest of this paper, first, we introduce a set of quality me-
trics, the QoX suite, which capture business and technical re-
quirements for an ETL engagement. We also discuss how tra-
deoffs among QoX metrics can be identified and evaluated. Then,
we present an example ETL workflow, which is used in various
optimization scenarios for illustrating our ideas.

2. QoX METRIC SUITE
The purpose of the QoX metric suite is to capture all relevant
quality metrics for an ETL engagement and incorporate these into
an optimized design and implementation. By incorporating these
metrics at all levels in the design process, the resulting implemen-
tation will better match the customer’s expectations and objec-
tives. This will reduce the time and cost of ETL projects.

2.1 Methodology
In our view, next-generation ETL projects require a layered me-
thodology that proceeds in successive, stepwise refinements from
high-level business requirements, through several levels of more
detailed specifications, down to execution models (Figure 1). At
each level of design, QoX metrics are introduced or refined from
higher levels. In that sense, the layered approach presents oppor-
tunities for optimization at each successive level of specification.
Optimizations at all design levels should be driven by QoX me-
trics. These metrics, in effect, prune the search space of all possi-

ble designs, much like cost-estimates are used to bound the search
space in cost-based query optimization.

At each design level, the operators constituting the ETL flows are
extended with specifications influenced by key quality metrics.
That helps the automatic or semi-automatic transition among the
levels. In other words, there may be several alternative transla-
tions from conceptual model to logical model and these alterna-
tives can be driven by the QoX objectives and tradeoffs. Similar-
ly, the translation from the logical model to the physical model
enables additional types of optimizations. For example, a join
operator at the conceptual level can be annotated with information
stating high requirement for freshness. This information will
eventually indicate, at the physical level, the choice of a physical
implementation for join, suitable for real-time environment (e.g.,
the MeshJoin [9]).

Figure 1. Layered approach for ETL design [3]

2.2 QoX Metrics
A non-exhaustive list of metrics that can be used to guide optimi-
zation include: performance, recoverability, reliability, freshness,
maintainability, scalability, availability, flexibility, robustness,
affordability, consistency, traceability, and auditability. An im-
portant research challenge is how to define these metrics precisely
and how to measure them. Some metrics are quantitative (e.g.,
reliability, freshness, cost) while other metrics may be difficult to
quantify (e.g., maintainability, flexibility). The software engineer-
ing community has measures for evaluating the quality of soft-
ware design, so we adapted some to the quality of ETL designs.
Due to space limitations, we focus here on a subset of the afore-
mentioned metrics, but for a description of other metrics we refer
the interested reader to [3].

Performance. Performance refers to the elapsed time to execute
an ETL workflow. For a given workflow, there are several tech-
niques to reduce the execution time that an optimizer might con-
sider. An obvious one is to increase the resources allocated for the
ETL execution (e.g., giving more memory or processing power).
However, this process requires fine-grained tuning (e.g., some
operations may need a greater extent of the available memory

than some others) and appropriate scheduling at both the data and
the process level.

ETL workflows are much more complex than traditional relation-
al queries, thus the well-known techniques for multi-query opti-
mization are not enough in this context [e.g., 2, 10, 11]. Still, we
can leverage knowledge acquired from query processing. For
example, the rule that the most restrictive operations should be
placed at the start of the flow, applies here as well. Such algebraic
optimization can be done in several phases of the design: concep-
tual, logical, and physical. At the conceptual and logical levels,
specific implementation details of the design may not be availa-
ble. Still, the designer knows that a conceptual operator contain-
ing a join operation, such as surrogate key assignment, is more
expensive than a filter operation that may reduce the moving data
volume. Similarly, an effective technique is to gather pipelining
and blocking operations separately from each other. For example,
it would be more efficient to modify a sequence of the form {fil-
ter, sorter, filter, filter, function, grouper} to {filter, filter, filter,
function, sorter, grouper}. The task of algebraic optimization is
not trivial, and one must ensure the applicability and correctness
of such modifications, and the correctness of the flow as well. As
for now, only a few research attempts have tackled this issue [12,
14]. The commercial ETL software either do not support any
automatic optimization capabilities or offer limited optimization
functionality (e.g., the PushDown optimization that pushes, usual-
ly small, portions of the ETL workflow, –either its beginning or
its end– to the DBMS trying to leverage its optimization power
[5]).

Apart from the algebraic optimization, another promising tech-
nique is to partition the data using any of the broadly available
methods –e.g., round-robin, hash-based, key-value, etc.– and to
parallelize the flow (or some parts of it). However, this is not an
automated task and should be designed manually. Additionally,
parallelizing a flow is not a panacea for improving its perfor-
mance. It is common knowledge that the parallelization is more
useful when “smaller” data volumes are involved and this is main-
ly because the cost of merging back the partitioned data is not
cheap. Interesting questions that arise here involve determining
where to split and merge the parallel flows, the most appropriate
partitioning method to be used, the number of parallel flows and
processors to be used (the two numbers are not necessary equal),
and so on.

Recoverability. ETL are software artifacts and as such they face
the probability of suffering from errors. Recoverability reflects
the ability of an ETL flow to resume after interruption and restore
the process to the point at which a failure occurred within a speci-
fied time window. An error occurs when a tuple does not arrive at
the target data warehouse at the expected time and form. Such an
error can be a result of an ETL operation failure or a system fail-
ure. The former type of error is expected to be minimized after a
thorough testing of the design. Usually, such errors may come up
mostly due to the evolution of the ETL design [16] or the modifi-
cation of the underlying systems (e.g., a software or hardware
update). On the other hand, it is more difficult to restrain system
failures. Typical errors of this category are due to network, power,
human, resource or other (miscellaneous) failures.

To deal with these errors, there are some options. The
straightforward one is to restart the ETL process from scratch.
This does not apply to most cases though, since usually the unin-

terrupted ETL execution nearly fits in the available time window.
Another option is to insert recovery point at several places of the
ETL workflow to make a persistent copy of the flow. Candidate
places are just after the extraction or before the loading (as land-
ing tables or files), within the transformations flow (as interme-
diate tables or files) or at any temporary storage points used by
blocking operators like sorters. Then, in the presence of a failure,
the system restarts from the closest recovery point that contains
correct data (the task gets complicated if one considers the roll-
back of the already processed tuples or the incremental restart
regarding only the previously unprocessed data). Obviously, the
introduction of a recovery point adds an additional I/O cost for
writing to disk, but this should be amortized appropriately over
the operational cost of the covered operations (the ones that pre-
cede the recovery point) and taking also under consideration the
failure probability at different places of the workflow.

Interesting challenges that need to be tackled include how many
recovery points to use and at which positions on the workflow.
For example, a simple flow may have none if it is faster to com-
pletely rerun it. On the other hand, for more costly flows, it makes
sense to add a recovery point after extraction (to reduce overhead
on the source systems) or following an operation that is costly or
difficult to undo (e.g., a sort). A common guideline is to store
between every phase (e.g., after the extraction and after the trans-
formations). In general, practice shows that after a failure the
design should allow restart from a previous recovery point or a
previous join point (when more than one flow are merged) or
from the beginning of the flow if all else fails. In any case, restart-
ability gains if we land to disk when data are in a good state. Fi-
nally, as a rule of the thumb, to leave time for potential recovery,
the design should contain operations that each run for less than:
(ETL_time_window – ETL_total_execution_time).

Reliability. Ideally, in the presence of a failure, the process should
either resume accordingly or should be immune to the error oc-
curred. The use of recovery points aims at achieving the first goal.
However, if the available execution time window does not allow
having recovery points (mainly due to the I/O cost needed for
their maintenance) or if the business requirements include a de-
mand for high reliability, an alternative to cope with system fail-
ures is to increase the software reliability or in other words, to
improve the ETL workflow performance over time.

ETL reliability represents the probability that an ETL design will
perform its intended operation during a specified time period
under given conditions. In general, fault-tolerance can be
achieved by either replication (running in parallel multiple iden-
tical instances of a flow), redundancy (providing multiple identic-
al instances of a flow and switching to one of the remaining in-
stances in case of a failure) or diversity (providing multiple dif-
ferent implementations of a flow, and using them like replicated
systems to cope with errors in a specific implementation). There
are various qualitative measures related to reliability, such as
computation availability (i.e., the expected computation capacity
of the system at given time t) or computation reliability (i.e., the
failure-free probability that the system will execute a task of
length x initiated at time t without an error). Such measures that
usually are quantified during the gathering of business require-
ments are expressed in terms of more fine-grained quantitative
measures as the mean time to failure, mean computation before
failure, capacity threshold, computation threshold, and so on.

Freshness. This metric concerns the latency between the occur-
rence of an event at an operational system (or data source) and its
appearance in the data warehouse. Better freshness (reduced la-
tency) requires either performance improvements or alternative
design (or both). The former can affect the resources allocation
(e.g., more memory and processing power should be assigned to
that flow) or techniques related to performance improvement
(e.g., re-arranging operators). The latter involve design decisions
like whether to use parallelism or instead of using recovery
points, one may consider using replication or redundancy. Also,
depending on the incoming rate of tuples, alternative implementa-
tion techniques more suitable for faster incoming rates should be
considered at the physical level. Recently, implementation algo-
rithms specifically tailored for the real time ETL have been pro-
posed either for the transformation [e.g., 9] or the loading phases
[e.g., 13]. It is imperative that lightweight ETL flows should be
used in such cases, which should avoid using blocking operations,
where possible. In that sense, scheduling of both the data flow and
execution order of transformations becomes crucial [4].

Maintainability. Some hard-to-quantify measures, such as main-
tainability, are often overlooked when designing an ETL
workflow. That increases at a later point the development cost,
the project overall cost (e.g., in terms of people engaged in it),
and the performance cost (e.g., as a result of “spaghetti” coding).
Consider the following two cases. First, when an expert needs to
modify the design, his/her task would be easier if the design is
readable and well documented; especially, when this expert is not
the original designer. Second, when a change occurs at the source
or even the target schemas (e.g., insert of a new attribute, modifi-
cation of a data type, drop/rename of a table/view, and so on),
then the workflow should easily adapt to that change; however,
this task is not straightforward [8]. In that sense, maintainability is
an important measure that should drive the ETL design. Typical
metrics for the maintainability of a flow are its size, length, mod-
ularity (cohesion), coupling, and complexity [16]. Unfortunately,
as far as we are aware, current ETL tools do not provide the func-
tionality for considering maintainability during the design.

Cost. The abovementioned measures have a common reference
point: the overall cost. This can be expressed in either financial
units, time units, personnel required, hardware needed, and so on.
The QoX metrics span different design levels. However, since we
refer to software artifacts, the QoX metrics can be expressed in
terms of resources needed for the ETL execution, such as memo-
ry, disk, processing power, network availability and speed, and
other hardware and software resources. For example, the cost of
buying an ETL tool should be balanced with the actual needs of
the project and the prospect for future scaling. A similar decision
is whether to choose a commercial product, an open-source tool
or an in-house developed solution. Finally, for more accuracy, the
total costs of owing, developing, using, and maintaining the ETL
software and training and employing personnel for operating it
should be added as well to the cost model.

2.3 Working with Tradeoffs
A major challenge is to identify dependencies and relationships
among the metrics that cause tradeoffs in optimizations of flows.
For example, a design may sacrifice performance for maintaina-
bility. Alternatively, in some cases, techniques for improving
performance like partitioning and parallelization may increase

freshness but on the other hand, may hurt maintainability and
robustness. An inherent difficulty is that different metrics come
into play at different levels of the methodology. For example,
freshness and reliability can be evaluated at the physical level,
while their implication at the conceptual or logical levels is not
clear. On the other hand, maintainability and robustness can drive
conceptual and logical modeling. Scalability and performance
span the conceptual, logical, and physical levels. Another dimen-
sion of metrics is that some reflect characteristics of the data, such
as freshness, consistency, traceability, while others are characte-
ristic of the workflow, such as maintainability, recoverability,
robustness.

A systematic approach to design or evaluate a design based on
QoX tradeoffs benefits both the flow designer and the administra-
tor. A great challenge is to devise a method for enabling compari-
son and tradeoffs of the different metrics. To incorporate the se-
mantics that each metric has into a common design space, we
consider two classes of metrics: the qualitative and the quantita-
tive. The former contains “higher level” QoX metrics that can be
seen as soft-goals; e.g., “The ETL process should be reliable.”
The latter contains “lower level” metrics that are functional para-
meters of the system; e.g., time window, execution time, recove-
rability time, arrival time, number of failures, latency of data
updates, memory, space, CPU utilization uptime, throughput,
number of processors, and so on. With this modeling approach,
we are able to correlate the QoX metrics and enable comparison
among them. For example, the notion of “reliable” can be ex-
pressed as: “the mean time between failures (MTBF) should be
greater than x time units”. Another example could be “the uptime
should be more than y time units.” Working like this, we get a
means for associating reliability with availability. Going from
higher to lower, more detailed, design levels, these associations
become more concrete and are represented by objective functions.

For supporting the systematic modeling of the design, soft-goal
interdependency graphs can be used [1]. Consider the case of a
design that should balance requirements for reliability, maintaina-
bility, performance, and freshness. Figure 2 shows the respective
interdependency graph. These three soft-goals, expressed in the
form of type[topic], are refined as soft-sub-goals and are based
either on topic or on type. The graph shows the relationships
among the soft-goals and the quantitative measures. For example,
Figure 2 illustrates that the degree of parallelism contributes ex-
tremely positively (++) to the fulfillment of the reliabili-
ty[software] soft-goal, since it can be seen as a form of redundan-
cy. It also affects positively freshness and performance. On the
other hand, parallelism affects negatively (-) the reliability of
hardware (more devices increase the probability of failure).

Figure 2. Example soft-goal interdependency graph

Figure 3. Example ETL workflow

Such interdependency graphs can be used for facilitating the un-
derstanding of the requirements by all the parties involved in the
ETL projects and for visualizing tradeoffs among multiple design
QoX objectives. For example, they are a useful tool for allowing
designers to demonstrate to business people the implication of the
objectives to the design and how the different objectives affect
each other. Ultimately, they can be used to drive the search space
for the design optimization or even for evaluating the cost of a
given design regarding a set of QoX metrics.

3. OPTIMIZATION TRADEOFFS

In this section, we elaborate on the necessity of using the QoX
metric suite by means of an ETL application from the enterprise
domain (here we discuss a simplified version of it). The respec-
tive ETL workflow is depicted in the upper left corner of Figure
3. For ease of presentation, we focus only on the highlighted part
of the scenario (enclosed by the rectangle at the bottom left corner
of the large workflow), which involves the propagation of sales
data to the target data warehouse. The scenario is depicted in
Figure 3. For now, consider the entities SP1 and SP2 as place-
holders for recovery (or save) points; we discuss their use later
on. The actual names of the involved entities are as follows:

S1: SALES_TRAN, S2: SALES_STAFF, S3: CUSTWEB_CS,
L1: STORE_DT, L2: PRODUCT,
DW1: SALES, DW2: SALES_REP, DW3: CUSTOMER,
V1: CUSTOMER_SALE_RELS, V2: SAL_SALES_REP_RELS.

Conceptually, this scenario can be divided in three main parts: the
sources, the data transformation area (a.k.a. data staging area,
DSA [7]), and the data warehouse site.

The source site comprises three source data stores that follow
different schemas and have different formats. Source S1 is a rela-
tional table storing transactional data about sales and source S2
consist of a set of files (log-sniffer dumps) containing information
about sales staff (e.g., status, branch, and working hours). Data
extracted from both sources use the same transfer channel for
populating the data transformation area. Source S3 handles data
from the enterprise’s web portal. Usually, their propagation
should be done in a streaming fashion, but at different moments
depending on system’s workload and business requirements it can
be done through batches of small files as well.

The transformation part consists of three conceptual flows; each
one is responsible for the population of a single data warehouse
table. The top flow essentially populates the customer table in the
data warehouse with click-stream data captured at the web portal.
This flow has a pressing requirement for freshness and also, in its
most frequent configuration, has to deal with streaming input. The
middle flow depends on data from source S2. Following the land-
ing of that data, the newly inserted and updated records are loaded
to DW2, which stores information about sales representatives.
Both the top and middle flows contain a few transformations hid-
den under the load task, which are not discussed here for space
limitations. The bottom flow that populates the sales fact table is
fed from both S1 and S2. The data after their landing to the trans-
formation area are compared (Δ transformation) against the pre-
vious landing (snapshot table) for identifying the changed tuples.
Then, four transformations are applied: a lookup operation (for
finding corresponding codes from store sites and for verifying the
moving information as well), a filter (for rejecting tuples contain-
ing null values) and a function operation (for modifying the
schema), and finally, a surrogate key assignment that replaces the
transactional keys with surrogate keys. Next, the data populate the
DW1 table.

Finally, at the data warehouse site, there exist (in our example
workflow) three tables and two views defined on top of them. The
first view, V1, relates customer and sales information (e.g., for
identifying customers’ status: platinum, gold, and silver). The
second view, V2, relates sales representatives and sales (e.g., for
categorizing staff and branches based on their performance).

Although, at a first glance the above design seems reasonably
adequate, looking at it from different perspectives reveals various
optimization opportunities. In the rest, we use the above example
for a discussion on design tradeoffs among different optimization
objectives. For assisting the presentation, we present a few illustr-
ative graphs produced for different configurations of the example
workflow. (We implemented the same workflow in different open
source and commercial ETL tools; although the behavior and
performance of these tools differ, the trends discussed in this
study are alike in the tools we used.) All graphs depict average
values concerning the best possible configuration in each case,
unless otherwise stated. We stress that our goal here is to indicate
the tradeoffs in using different QoX metrics, and not to focus on
individual numbers.

3.1 Optimization for Performance
Although performance is the typical optimization objective, still
with current ETL technology, designs must be optimized in a
manual, rather ad-hoc way, based on previous practices known to
the designer. As we discussed, one solution is algebraic optimiza-
tion of the design. Following the idea of moving the most restric-
tive operators to the start of a flow, for the bottom flow of Figure
3, an option for reducing the data volume will be to move the
FltNN before the lookup operation; of course the move must be
valid (the filter does not depend on the lookup) and offer some
gain (the data do contain null values).

Another optimization opportunity concerns the parallelization of
the ETL workflow. Conceptually, this implies two actions: (a)
assigning more CPU’s (at least more than one) to the ETL execu-
tion and (b) creating multiple flows that run in parallel. Usually,
both actions should be performed together and that complicates
the task of automatically tuning this process. In addition, one
important tuning decision involves whether to parallelize the
whole ETL flow or parts of it.

For demonstrating these tradeoffs, we experimented with the ex-
ample of Figure 3 using different execution scenarios involving
multiple CPUs (from 1 to 8) and different parallelization options
(see Figure 4). Specifically, we tested 4 configurations: (a) 1PF,
in which we did not parallelize the ETL process (i.e., this is the
normal configuration); (b) 4PF-p, in which we parallelized parts
of the original flow using 4 parallel branches; (c) 4PF-f, in which
we run the whole ETL flow in 4 branches; and (d) 8PF-p, in
which we parallelized parts of the flow using 8 parallel flows.
Some interesting tradeoffs are depicted in Figure 4. The part of
each bar filled with strong color represents extraction times, whe-
reas the part filled with faded color represents transformation
times. It is not only that extraction dominates the ETL execution
in this case; one may observe that the parallelization improves
more the transformation part in almost all the settings. Also, it
seems that increasing the processing power does not improve
performance linearly. Running the whole workflow in parallel is
not the best solution either. Possible tunings involve the number
of partitions and which part(s) of the flow run in parallel, as well.

Figure 4. Parallelization effects on ETL design

Notice that just assigning more processors to an ETL workflow
(without performing any parallelization) is not optimal. Observe,
also, Figure 5 (the w/o RP case) where the normal execution of a
part of the example scenario is not much affected by simply as-
signing more processors; an appropriate parallelization policy is
required.

3.2 Optimization for Recoverability and Per-
formance
As we have discussed, the use of recovery points (RP) –placed in
various points of the workflow– significantly increases the total
execution cost since it adds an additional I/O cost. We show this
by experimenting with the example workflow.

Figure 5 shows the behavior of the design when we use recovery
points (w/ RP case) and when we don’t (w/o RP case). In particu-
lar, w/ RP (b) and w/ RP (w) are results for the best and worst poss-
ible configuration, respectively. In this experiment, for isolating
the impact of recoverability, we did not parallelize the flow; we
tested the performance of a single flow varying the number of
processors. The results show that using recovery points increases
significantly the total cost. In fact, even when the processing
power increases the w/ RP (b) case is getting much worse than the
normal case (which performs slightly better), because the threads
responsible for I/O operations do not exploit caching benefits to
an adequate extent.

Figure 5. Cost imposed by the use of recovery points

However, when a failure occurs, the use of recovery points im-
proves performance. Observe Figure 6, where the normal (w/o
RP) and the w/RP(b) cases of Figure 5 (without failures, w/o f)
are examined again, this time in the presence of a failure (with
failure, w/ f). Then, the performance of normal case (w/f, w/o RP)
is worse than the performance when recovery points are used.
Still, if a failure occurs near the previous recovery point (w/f, w/
RP(b)-n), then, the recovery performs well. Otherwise, if a failure
occurs at a point far from the previous recovery point (w/f, w/
RP(b)-f), then, the recovery does not perform well. (Of course,
this result depends on the cost of transformations existing be-
tween the failure and the previous recovery points; if the trans-
formations’ cost is fairly small, then the recovery performs bet-
ter.)

Figure 6. Cost in the presence of a failure

Therefore, interesting decision points include the number and the
placement of the recovery points on the workflow. As we have
seen, different design choices result in different results (observe
best and worst cases in Figure 5 and the scenarios of a failure
occurred near and far from a recovery point in Figure 6).

However, some heuristics can be used for facilitating such decision.
One may use a recovery point –e.g., SP1 and/or SP2 in Figure 3–
just after extraction when the data reach the transformation area or
after resolving the changes (the exact point is a matter of tuning and
depends on the specific scenario details). Recall the results of Figure
4 where the extraction dominates the execution time; when the ex-
traction is that costly, then it definitely makes sense to add a recov-
ery point close to it. Using recovery points after the extraction phase
assists in more than one way beyond recovery; e.g., as a synchroni-
zation point since not all sources or source data are available at the
same time. Additionally, since the network channels used between
the source sites and the transformation area inflict a notion of un-
predictability on the workflow and increase the risk of having a
failure, one may want to store just after the data transfer depending
on the reliability of his/her network. On the other hand, regarding
performance, it is often faster to store first to a flat file and later
populate a table, instead of hitting the table directly.

3.3 Optimization for Reliability, Recoverabili-
ty, and Performance
An alternative to recovery points is to have ETL designs that can
tolerate such failures; in other words, to design reliable ETL de-
signs.

An obvious tradeoff involves the reliability versus the performance.
As the execution time window decreases and especially, as it reach-
es the near real-time case, the option for recovery diminishes. Con-
sider the top flow of our example: the data are coming in fast rates,
and since we cannot afford to lose any tuple (this is a strict require-
ment in the ETL context [15]), we need either to store them in a
persistent disk-based data store (e.g., at SP2) or to use a fault-
tolerant method.

For ensuring the reliability of the process, we may need to relax the
other objectives’ expectations. If we choose to keep the cost intact,
we can retain the ETL budget by accepting lower performance stan-
dards. For example, we can use the same resources and instead of
parallelizing the ETL process (multiple threads handle subsets of the
data volumes) we can replicate the ETL process (multiple threads
handle the whole data volume). In that sense, we follow a fail-safe
design that allows the system to continue operation at a reduced
level (graceful degradation) and avoids a potential crash of the
process, when a certain component fails. Typical consequences are a
reduction in throughput and an increase in execution time. Observe
Figure 7 where we measured the additional costs that recovery
points and redundancy impose to the normal execution of the
workflow. Clearly, redundancy guarantees better performance than
recovery but the relative improvement depends on the redundancy
type used. Figure 7 shows average values for n-modular redundancy
(NMR) that vary from 14% (for triple modular redundancy, TMR)
to 58% (5-modular redundancy). Of course, as the number of re-
dundant flows increases the reliability of the system increases too
(the failure probability decreases), but then the system resources are
shared among a larger number of flows.

Figure 7. Use of recovery points vs. NMR

An alternative for honoring the performance requirements affects
the total cost of the process. For example, we can maintain the ex-
ecution of the ETL process to achieve the performance goals, but
then, we should increase the resources (e.g., number of machines)
used for executing concurrently the same process multiple times.

3.4 Optimization for Freshness, Reliability,
Recoverability, and Performance
The top flow of Figure 3 needs special care when it involves stream-
ing data and the process is realized in a (near) real-time fashion. At
the physical level, as we discussed, possible solutions include
changing the resource allocation, using implementation techniques
suitable for streaming data, and parallelizing the flow. Since in this
case the goal is to minimize the latency for updating the target data
store, we need to increase the frequency of loads (i.e., the frequency
of ETL executions) in the course of time too.

However, a requirement for freshness may change the design at
higher levels as well. Considering the bottom flow, assume that a
service level agreement requires that the freshness of data in table
DW1 or in view V1 should be no less than t time units and that at
the same time, the sources S1 and S2 feed data to the flow at differ-
ent rates (rows/sec) (S1 provides data faster than S2). Having that
knowledge, a possible solution is to create three different flows for
populating the middle and bottom flows. The middle flow should
have its own link to the source S2 to avoid further delaying the bot-
tom flow. Then, the bottom flow can be replaced by two new flows,
a faster and a slower, each one corresponding to a different source.
With such change that can be captured even at the conceptual or
logical levels, we can improve the freshness of data in DW1 and in
V1 (the other branch that feeds it is the real-time one). Similarly, we
can work for the recoverability of the process; the flow having more
pressing requirement for freshness may use replication, while the
other may use recovery points.

Observe Figure 8 that shows the propagation of a certain data vo-
lume to the target data store using various design configurations.
The configurations tested involve running the process in 2 parallel
flows without any recovery (w/o RP, 2PF), using redundancy
(TMR), using a small (RP+) and a larger (RP++) number of recov-
ery points, and executing the process without recovery points, re-
dundancy and parallelization (w/o RP, 1F). The y-axis in Figure 8
shows the time needed for propagating a change occurred at the
source to the target data store. As the number of loads per time unit
(e.g., per day) increases (and the data are processed in batches of
smaller size) the freshness of the data warehouse gets improved.
However, each configuration shows

Figure 8. Freshness of data vs. frequency of ETL execution

different results. Therefore, the designer should choose according to
the requirements for the design; for example, the parallelized ver-
sion should be preferred when only performance matters, but to
cope with failures the TMR is more appealing.

3.5 Optimization for Other QoX Metrics
In addition, the maintainability of the flow depicted in Figure 3 can
be improved. An ETL workflow can be represented as a directed
graph; its nodes are the data stores and ETL operations of the
workflow. Observe that most of the nodes (e.g., ETL operations) of
our example workflow depend on one node and feed another one.
However, the Δ transformation depends on three nodes (i.e., the
three sources) and many nodes depend on it (i.e., observe the two
flows starting from Δ and the SP1 recovery point). That makes the Δ
transformation a vulnerable point of the design [16]. If we follow
the suggestion of replacing the middle and bottom flows with three
new flows starting from the respective sources, then this problem
will be resolved. In addition, the workflow complexity gets im-
proved, but the modularity and size of the workflow are affected
negatively (e.g., parts of the workflow perform identical tasks).

From another perspective, one may choose to increase the workflow
complexity and the data volumes by enriching the data flow with
extra information useful for provenance purposes. In doing so, at
least the performance, freshness, complexity, and in some extent the
auditability of the system are hurt, but the traceability gains ground.

4. CONCLUSIONS
In this paper, we have addressed the problem of dealing with mul-
tiple quality and optimization objectives in an ETL design. Existing
research and commercial solutions focus mainly on performance,
while practice shows that other metrics like recoverability, reliabili-
ty, maintainability, freshness, scalability, availability, flexibility,
robustness, and so on, are also of great interest. In fact, since current
solutions neither capture nor track such qualities, the consulting and
designing teams have to revisit and complement the designs at later
points. Naturally, this process increases the consulting and thus, the
overall cost of the ETL design. We have presented the QoX metric
suite that aims at handling such metrics in all the ETL design levels.
We have discussed the interrelationships and dependencies among
the metrics that lead to tradeoffs for alternative optimizations of
ETL processes. Another challenge is creating tools to automate the
optimization, which is a topic we are working on.

The QoX metric suite is extensible to other metrics. It can work on
top of any ETL engine that provides export and import capabilities
(e.g., the metadata of an ETL workflow can be exported as or im-

ported from an XML file). Additionally, our approach is agnostic to
any particular implementation style, e.g., ETL, ELT, ELTL, ETLT.
We are not tying ourselves to a specific product; rather, we are
creating a consulting solution for creating ETL designs that are
optimal for the customer's QoX requirements, for optimizing exist-
ing ETL designs for QoX metrics, and for evaluating the cost of a
given ETL design.

5. ACKNOWLEDGMENTS
Our thanks to Paul Watson, Paul Urban, John Bicknell, Rom Lin-
hares, Heather Wainscott, Tom Harrocks, Werner Rheeder, and
Blair Elzinga for sharing with us their insights and experience re-
garding the ETL practice and needs in real-world, large-scale
projects.

6. REFERENCES
1. L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-Functional

Requirements in Software Engineering. Kluwer Academic Pub-
lishing, 1999.

2. N.N. Dalvi, S.K. Sanghai, P. Roy, S. Sudarshan. Pipelining in
Multi-Query Optimization. In PODS, 2001.

3. U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson. Data Inte-
gration Flows for Business Intelligence. In EDBT, 2009.

4. L. Golab, T. Johnson, V. Shkapenyuk. Scheduling Updates in a
Real-Time Stream Warehouse. In ICDE, 2009.

5. Informatica. How to Achieve Flexible, Cost-effective Sca-
lability and Performance through Pushdown Processing. White
paper, November 2007.

6. W.H. Inmon. Building the Data Warehouse. John Wiley, 1993.

7. Kimball, R., et al.: The Data Warehouse Lifecycle Toolkit. John
Wiley & Sons, 1998.

8. G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou.
Policy-Regulated Management of ETL Evolution. In Springer
JoDS, Vol. XIII, pp. 146–176, 2009.

9. N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, N.-E.
Frantzell. Supporting Streaming Updates in an Active Data
Warehouse. In ICDE, pp. 476-485, 2007.

10. P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe. Efficient and Ex-
tensible Algorithms for Multi Query Optimization. In SIGMOD,
pp. 249-260, 2000.

11. T.K. Sellis. Multiple-Query Optimization. In ACM Trans. Data-
base Syst. 13(1), pp. 23-52, 1988.

12. A. Simitsis, P. Vassiliadis, T.K. Sellis. Optimizing ETL
Processes in Data Warehouses. In ICDE, pp. 564-575, 2005.

13. C. Thomsen, T.B. Pedersen, W. Lehner. RiTE: Providing On-
Demand Data for Right-Time Data Warehousing. In ICDE, pp.
456-465, 2008.

14. V. Tziovara, P. Vassiliadis, A. Simitsis. Deciding the Phys-ical
Implementation of ETL Workflows. In DOLAP, pp. 49-56,
2007.

15. P. Vassiliadis, A. Simitsis. Near Real Time ETL. In Springer
Annals of Information Systems, Vol. 3, pp. 19-29, 2008.

16. P. Vassiliadis, A. Simitsis, M. Terrovitis, S. Skiadopoulos. Blu-
eprints and Measures for ETL Workflows. In ER, pp. 385-400,
2005.

