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ABSTRACT 
As business intelligence becomes increasingly essential for organ-
izations and as it evolves from strategic to operational, the com-
plexity of Extract-Transform-Load (ETL) processes grows. In 
consequence, ETL engagements have become very time consum-
ing, labor intensive, and costly. At the same time, additional re-
quirements besides functionality and performance need to be 
considered in the design of ETL processes. In particular, the de-
sign quality needs to be determined by an intricate combination of 
different metrics like reliability, maintenance, scalability, and 
others. Unfortunately, there are no methodologies, modeling lan-
guages or tools to support ETL design in a systematic, formal way 
for achieving these quality requirements. The current practice 
handles them with ad-hoc approaches only based on designers’ 
experience. This results in either poor designs that do not meet the 
quality objectives or costly engagements that require several itera-
tions to meet them. A fundamental shift that uses automation in 
the ETL design task is the only way to reduce the cost of these 
engagements while obtaining optimal designs. Towards this goal, 
we present a novel approach to ETL design that incorporates a 
suite of quality metrics, termed QoX, at all stages of the design 
process. We discuss the challenges and tradeoffs among QoX 
metrics and illustrate their impact on alternative designs.  

Categories and Subject Descriptors 
H.2.7 [Database Administration]: Data warehouse and reposito-
ry.  

General Terms 
Management, Performance, Design, Reliability, Experimentation. 

Keywords 
ETL, Data Warehouses, Metrics, QoX, Quality, Modeling. 

1. INTRODUCTION 
The backstage of the Data Warehouse architecture consists of 
Extract-Transform-Load (ETL) processes. ETL processes are 
responsible for extracting data from distributed and often hetero-
geneous sources, cleaning and transforming that data according to 

business requirements, and finally, loading it to the data ware-
house. ETL design and implementation constitutes 70% (by some 
estimates) of the effort in data warehousing projects, and today is 
offered as a time-consuming, labor-intensive consulting service. 
Apart from the fact that these projects are expensive, ETL is the 
critical path from business events (at the data sources) to business 
analysis and action (at the warehouse). Thus, delays in ETL en-
gagements directly affect business operational effectiveness. 
There are strong motivations for making ETL engagements less 
expensive and faster. 

The lifecycle of a typical ETL engagement begins with the ga-
thering of business and technology requirements. The business 
requirements specify information needs and service level objec-
tives like overall cost, latency between operational event and 
warehouse load, provenance needs, and so on. The technology 
requirements specify the details of data sources and targets, trans-
formations, infrastructure, dependencies and constraints on ex-
tracts and loads, and system availability. These requirements are 
synthesized into specifications that are combined to form a high-
level conceptual design. This is followed by the construction of 
logical and physical models to capture the data flows from opera-
tional systems to a data warehouse. The final step is to express the 
physical model in an implementation language such as SQL, a 
scripting language or some ETL engine (e.g., Ab Initio, DataStage 
or Informatica).  

In current commercial and research solutions, the focus for ETL is 
on correct functionality and adequate performance, i.e., the func-
tional mappings from data sources to warehouse must be correct 
and the ETL runs must complete within a certain time window. 
Correctness and performance are important objectives. However, 
expert consultants and practitioners, who have broad and deep 
experience in ETL, have observed that in real-world projects ad-
ditional objectives are important as well. As one practitioner said: 
“If I wanted better performance, I would ask for better hardware; 
unfortunately, I cannot buy a more maintainable or a more relia-
ble system.” 

In fact, nowadays ETL designers do deal with a host of quality 
objectives besides performance, including reliability, recoverabili-
ty, maintainability, freshness, scalability, availability, flexibility, 
robustness, affordability, and auditability. However, the modeling 
languages and ETL tools neither capture such quality objectives 
nor provide a formal mechanism to quantify, track, and measure 
them. Consequently, they are dealt with informally based on the 
best practices and experience of the ETL designer. Hence, in the 
translation from the high-level business and technical require-
ments to detailed ETL specifications, objectives may be dropped. 
This makes the final implementation sub-optimal with respect to 
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the project objectives. Correcting for this adds time, cost, and 
complexity to the engagement. Our goal is to reduce the time and 
cost of ETL engagements by facilitating the generation of optimal 
ETL designs that incorporate all of its objectives.  

As an aside, we observe that as enterprises become more auto-
mated, data-driven, and real-time, Business Intelligence architec-
tures are evolving to support operational decision-making. This 
imposes additional needs for next-generation ETL which include: 
a larger number and diversity of data sources and data types (less 
structured content, external data feeds, and streaming data), real 
time decision making, fast refresh cycles, more complex analytic 
and reporting tools, 24x7 availability, and so on. With these in-
creasing demands on data warehouses, ETL design has become 
even more complex.  

Consequently, we feel it is time to take a fresh, comprehensive 
look at ETL, or more generally, the problem of data integration 
flow design and implementation. We propose a novel, more com-
prehensive approach to ETL that considers additional quality 
metrics besides performance. We refer to these collectively as 
QoX. The QoX metric suite is incorporated at all stages of the 
design process, from high-level specifications to implementation. 
A major challenge is to identify the interrelationships and depen-
dencies among the quality metrics that lead to tradeoffs for alter-
native optimizations of ETL processes. Another major challenge 
is to automate the optimization process. Hence, a systematic ap-
proach to ETL design based on QoX benefits the designer, im-
plementer, and administrator.  

We note that our approach applies not just to new integration 
projects. As is often the case in outsourcing, designers may be 
asked to evaluate or modify an existing ETL workflow for new 
requirements, sources, hardware, and so on.  The techniques we 
describe here are just as applicable in understanding and improv-
ing pre-existing ETL as to new projects. 

In the rest of this paper, first, we introduce a set of quality me-
trics, the QoX suite, which capture business and technical re-
quirements for an ETL engagement. We also discuss how tra-
deoffs among QoX metrics can be identified and evaluated. Then, 
we present an example ETL workflow, which is used in various 
optimization scenarios for illustrating our ideas.  

2. QoX METRIC SUITE 
The purpose of the QoX metric suite is to capture all relevant 
quality metrics for an ETL engagement and incorporate these into 
an optimized design and implementation. By incorporating these 
metrics at all levels in the design process, the resulting implemen-
tation will better match the customer’s expectations and objec-
tives. This will reduce the time and cost of ETL projects.  

2.1 Methodology 
In our view, next-generation ETL projects require a layered me-
thodology that proceeds in successive, stepwise refinements from 
high-level business requirements, through several levels of more 
detailed specifications, down to execution models (Figure 1). At 
each level of design, QoX metrics are introduced or refined from 
higher levels. In that sense, the layered approach presents oppor-
tunities for optimization at each successive level of specification. 
Optimizations at all design levels should be driven by QoX me-
trics. These metrics, in effect, prune the search space of all possi-

ble designs, much like cost-estimates are used to bound the search 
space in cost-based query optimization.  

At each design level, the operators constituting the ETL flows are 
extended with specifications influenced by key quality metrics. 
That helps the automatic or semi-automatic transition among the 
levels. In other words, there may be several alternative transla-
tions from conceptual model to logical model and these alterna-
tives can be driven by the QoX objectives and tradeoffs. Similar-
ly, the translation from the logical model to the physical model 
enables additional types of optimizations. For example, a join 
operator at the conceptual level can be annotated with information 
stating high requirement for freshness. This information will 
eventually indicate, at the physical level, the choice of a physical 
implementation for join, suitable for real-time environment (e.g., 
the MeshJoin [9]). 

 
Figure 1. Layered approach for ETL design [3] 

2.2 QoX Metrics 
A non-exhaustive list of metrics that can be used to guide optimi-
zation include: performance, recoverability, reliability, freshness, 
maintainability, scalability, availability, flexibility, robustness, 
affordability, consistency, traceability, and auditability. An im-
portant research challenge is how to define these metrics precisely 
and how to measure them.  Some metrics are quantitative (e.g., 
reliability, freshness, cost) while other metrics may be difficult to 
quantify (e.g., maintainability, flexibility). The software engineer-
ing community has measures for evaluating the quality of soft-
ware design, so we adapted some to the quality of ETL designs. 
Due to space limitations, we focus here on a subset of the afore-
mentioned metrics, but for a description of other metrics we refer 
the interested reader to [3].  

Performance. Performance refers to the elapsed time to execute 
an ETL workflow. For a given workflow, there are several tech-
niques to reduce the execution time that an optimizer might con-
sider. An obvious one is to increase the resources allocated for the 
ETL execution (e.g., giving more memory or processing power). 
However, this process requires fine-grained tuning (e.g., some 
operations may need a greater extent of the available memory 



 

than some others) and appropriate scheduling at both the data and 
the process level. 

ETL workflows are much more complex than traditional relation-
al queries, thus the well-known techniques for multi-query opti-
mization are not enough in this context [e.g., 2, 10, 11]. Still, we 
can leverage knowledge acquired from query processing. For 
example, the rule that the most restrictive operations should be 
placed at the start of the flow, applies here as well. Such algebraic 
optimization can be done in several phases of the design: concep-
tual, logical, and physical. At the conceptual and logical levels, 
specific implementation details of the design may not be availa-
ble. Still, the designer knows that a conceptual operator contain-
ing a join operation, such as surrogate key assignment, is more 
expensive than a filter operation that may reduce the moving data 
volume. Similarly, an effective technique is to gather pipelining 
and blocking operations separately from each other. For example, 
it would be more efficient to modify a sequence of the form {fil-
ter, sorter, filter, filter, function, grouper} to {filter, filter, filter, 
function, sorter, grouper}. The task of algebraic optimization is 
not trivial, and one must ensure the applicability and correctness 
of such modifications, and the correctness of the flow as well. As 
for now, only a few research attempts have tackled this issue [12, 
14]. The commercial ETL software either do not support any 
automatic optimization capabilities or offer limited optimization 
functionality (e.g., the PushDown optimization that pushes, usual-
ly small, portions of the ETL workflow, –either its beginning or 
its end– to the DBMS trying to leverage its optimization power 
[5]).  

Apart from the algebraic optimization, another promising tech-
nique is to partition the data using any of the broadly available 
methods –e.g., round-robin, hash-based, key-value, etc.– and to 
parallelize the flow (or some parts of it). However, this is not an 
automated task and should be designed manually. Additionally, 
parallelizing a flow is not a panacea for improving its perfor-
mance. It is common knowledge that the parallelization is more 
useful when “smaller” data volumes are involved and this is main-
ly because the cost of merging back the partitioned data is not 
cheap. Interesting questions that arise here involve determining 
where to split and merge the parallel flows, the most appropriate 
partitioning method to be used, the number of parallel flows and 
processors to be used (the two numbers are not necessary equal), 
and so on. 

Recoverability. ETL are software artifacts and as such they face 
the probability of suffering from errors. Recoverability reflects 
the ability of an ETL flow to resume after interruption and restore 
the process to the point at which a failure occurred within a speci-
fied time window. An error occurs when a tuple does not arrive at 
the target data warehouse at the expected time and form. Such an 
error can be a result of an ETL operation failure or a system fail-
ure. The former type of error is expected to be minimized after a 
thorough testing of the design. Usually, such errors may come up 
mostly due to the evolution of the ETL design [16] or the modifi-
cation of the underlying systems (e.g., a software or hardware 
update). On the other hand, it is more difficult to restrain system 
failures. Typical errors of this category are due to network, power, 
human, resource or other (miscellaneous) failures.  

To deal with these errors, there are some options. The 
straightforward one is to restart the ETL process from scratch. 
This does not apply to most cases though, since usually the unin-

terrupted ETL execution nearly fits in the available time window. 
Another option is to insert recovery point at several places of the 
ETL workflow to make a persistent copy of the flow. Candidate 
places are just after the extraction or before the loading (as land-
ing tables or files), within the transformations flow (as interme-
diate tables or files) or at any temporary storage points used by 
blocking operators like sorters. Then, in the presence of a failure, 
the system restarts from the closest recovery point that contains 
correct data (the task gets complicated if one considers the roll-
back of the already processed tuples or the incremental restart 
regarding only the previously unprocessed data). Obviously, the 
introduction of a recovery point adds an additional I/O cost for 
writing to disk, but this should be amortized appropriately over 
the operational cost of the covered operations (the ones that pre-
cede the recovery point) and taking also under consideration the 
failure probability at different places of the workflow.  

Interesting challenges that need to be tackled include how many 
recovery points to use and at which positions on the workflow. 
For example, a simple flow may have none if it is faster to com-
pletely rerun it. On the other hand, for more costly flows, it makes 
sense to add a recovery point after extraction (to reduce overhead 
on the source systems) or following an operation that is costly or 
difficult to undo (e.g., a sort). A common guideline is to store 
between every phase (e.g., after the extraction and after the trans-
formations). In general, practice shows that after a failure the 
design should allow restart from a previous recovery point or a 
previous join point (when more than one flow are merged) or 
from the beginning of the flow if all else fails. In any case, restart-
ability gains if we land to disk when data are in a good state. Fi-
nally, as a rule of the thumb, to leave time for potential recovery, 
the design should contain operations that each run for less than: 
(ETL_time_window – ETL_total_execution_time). 

Reliability. Ideally, in the presence of a failure, the process should 
either resume accordingly or should be immune to the error oc-
curred. The use of recovery points aims at achieving the first goal. 
However, if the available execution time window does not allow 
having recovery points (mainly due to the I/O cost needed for 
their maintenance) or if the business requirements include a de-
mand for high reliability, an alternative to cope with system fail-
ures is to increase the software reliability or in other words, to 
improve the ETL workflow performance over time.  

ETL reliability represents the probability that an ETL design will 
perform its intended operation during a specified time period 
under given conditions. In general, fault-tolerance can be 
achieved by either replication (running in parallel multiple iden-
tical instances of a flow), redundancy (providing multiple identic-
al instances of a flow and switching to one of the remaining in-
stances in case of a failure) or diversity (providing multiple dif-
ferent implementations of a flow, and using them like replicated 
systems to cope with errors in a specific implementation). There 
are various qualitative measures related to reliability, such as 
computation availability (i.e., the expected computation capacity 
of the system at given time t) or computation reliability (i.e., the 
failure-free probability that the system will execute a task of 
length x initiated at time t without an error). Such measures that 
usually are quantified during the gathering of business require-
ments are expressed in terms of more fine-grained quantitative 
measures as the mean time to failure, mean computation before 
failure, capacity threshold, computation threshold, and so on. 



 

Freshness. This metric concerns the latency between the occur-
rence of an event at an operational system (or data source) and its 
appearance in the data warehouse. Better freshness (reduced la-
tency) requires either performance improvements or alternative 
design (or both). The former can affect the resources allocation 
(e.g., more memory and processing power should be assigned to 
that flow) or techniques related to performance improvement 
(e.g., re-arranging operators). The latter involve design decisions 
like whether to use parallelism or instead of using recovery 
points, one may consider using replication or redundancy. Also, 
depending on the incoming rate of tuples, alternative implementa-
tion techniques more suitable for faster incoming rates should be 
considered at the physical level. Recently, implementation algo-
rithms specifically tailored for the real time ETL have been pro-
posed either for the transformation [e.g., 9] or the loading phases 
[e.g., 13]. It is imperative that lightweight ETL flows should be 
used in such cases, which should avoid using blocking operations, 
where possible. In that sense, scheduling of both the data flow and 
execution order of transformations becomes crucial [4].  

Maintainability. Some hard-to-quantify measures, such as main-
tainability, are often overlooked when designing an ETL 
workflow. That increases at a later point the development cost, 
the project overall cost (e.g., in terms of people engaged in it), 
and the performance cost (e.g., as a result of “spaghetti” coding). 
Consider the following two cases. First, when an expert needs to 
modify the design, his/her task would be easier if the design is 
readable and well documented; especially, when this expert is not 
the original designer. Second, when a change occurs at the source 
or even the target schemas (e.g., insert of a new attribute, modifi-
cation of a data type, drop/rename of a table/view, and so on), 
then the workflow should easily adapt to that change; however, 
this task is not straightforward [8]. In that sense, maintainability is 
an important measure that should drive the ETL design. Typical 
metrics for the maintainability of a flow are its size, length, mod-
ularity (cohesion), coupling, and complexity [16]. Unfortunately, 
as far as we are aware, current ETL tools do not provide the func-
tionality for considering maintainability during the design. 

Cost. The abovementioned measures have a common reference 
point: the overall cost. This can be expressed in either financial 
units, time units, personnel required, hardware needed, and so on. 
The QoX metrics span different design levels. However, since we 
refer to software artifacts, the QoX metrics can be expressed in 
terms of resources needed for the ETL execution, such as memo-
ry, disk, processing power, network availability and speed, and 
other hardware and software resources. For example, the cost of 
buying an ETL tool should be balanced with the actual needs of 
the project and the prospect for future scaling. A similar decision 
is whether to choose a commercial product, an open-source tool 
or an in-house developed solution. Finally, for more accuracy, the 
total costs of owing, developing, using, and maintaining the ETL 
software and training and employing personnel for operating it 
should be added as well to the cost model. 

2.3 Working with Tradeoffs 
A major challenge is to identify dependencies and relationships 
among the metrics that cause tradeoffs in optimizations of flows. 
For example, a design may sacrifice performance for maintaina-
bility. Alternatively, in some cases, techniques for improving 
performance like partitioning and parallelization may increase 

freshness but on the other hand, may hurt maintainability and 
robustness. An inherent difficulty is that different metrics come 
into play at different levels of the methodology. For example, 
freshness and reliability can be evaluated at the physical level, 
while their implication at the conceptual or logical levels is not 
clear. On the other hand, maintainability and robustness can drive 
conceptual and logical modeling. Scalability and performance 
span the conceptual, logical, and physical levels. Another dimen-
sion of metrics is that some reflect characteristics of the data, such 
as freshness, consistency, traceability, while others are characte-
ristic of the workflow, such as maintainability, recoverability, 
robustness. 

A systematic approach to design or evaluate a design based on 
QoX tradeoffs benefits both the flow designer and the administra-
tor. A great challenge is to devise a method for enabling compari-
son and tradeoffs of the different metrics. To incorporate the se-
mantics that each metric has into a common design space, we 
consider two classes of metrics: the qualitative and the quantita-
tive. The former contains “higher level” QoX metrics that can be 
seen as soft-goals; e.g., “The ETL process should be reliable.” 
The latter contains “lower level” metrics that are functional para-
meters of the system; e.g., time window, execution time, recove-
rability time, arrival time, number of failures, latency of data 
updates, memory, space, CPU utilization uptime, throughput, 
number of processors, and  so on. With this modeling approach, 
we are able to correlate the QoX metrics and enable comparison 
among them. For example, the notion of “reliable” can be ex-
pressed as: “the mean time between failures (MTBF) should be 
greater than x time units”. Another example could be “the uptime 
should be more than y time units.” Working like this, we get a 
means for associating reliability with availability. Going from 
higher to lower, more detailed, design levels, these associations 
become more concrete and are represented by objective functions. 

For supporting the systematic modeling of the design, soft-goal 
interdependency graphs can be used [1]. Consider the case of a 
design that should balance requirements for reliability, maintaina-
bility, performance, and freshness. Figure 2 shows the respective 
interdependency graph. These three soft-goals, expressed in the 
form of type[topic], are refined as soft-sub-goals and are based 
either on topic or on type. The graph shows the relationships 
among the soft-goals and the quantitative measures. For example, 
Figure 2 illustrates that the degree of parallelism contributes ex-
tremely positively (++) to the fulfillment of the reliabili-
ty[software] soft-goal, since it can be seen as a form of redundan-
cy. It also affects positively freshness and performance. On the 
other hand, parallelism affects negatively (-) the reliability of 
hardware (more devices increase the probability of failure).  

 

Figure 2. Example soft-goal interdependency graph 



 

 

Figure 3. Example ETL workflow 

Such interdependency graphs can be used for facilitating the un-
derstanding of the requirements by all the parties involved in the 
ETL projects and for visualizing tradeoffs among multiple design 
QoX objectives. For example, they are a useful tool for allowing 
designers to demonstrate to business people the implication of the 
objectives to the design and how the different objectives affect 
each other. Ultimately, they can be used to drive the search space 
for the design optimization or even for evaluating the cost of a 
given design regarding a set of QoX metrics. 

3. OPTIMIZATION TRADEOFFS 

In this section, we elaborate on the necessity of using the QoX 
metric suite by means of an ETL application from the enterprise 
domain (here we discuss a simplified version of it). The respec-
tive ETL workflow is depicted in the upper left corner of Figure 
3. For ease of presentation, we focus only on the highlighted part 
of the scenario (enclosed by the rectangle at the bottom left corner 
of the large workflow), which involves the propagation of sales 
data to the target data warehouse. The scenario is depicted in 
Figure 3. For now, consider the entities SP1 and SP2 as place-
holders for recovery (or save) points; we discuss their use later 
on. The actual names of the involved entities are as follows: 

S1: SALES_TRAN, S2: SALES_STAFF, S3: CUSTWEB_CS, 
L1: STORE_DT, L2: PRODUCT,  
DW1: SALES, DW2: SALES_REP, DW3: CUSTOMER,  
V1: CUSTOMER_SALE_RELS, V2: SAL_SALES_REP_RELS.

Conceptually, this scenario can be divided in three main parts: the 
sources, the data transformation area (a.k.a. data staging area, 
DSA [7]), and the data warehouse site.  

The source site comprises three source data stores that follow 
different schemas and have different formats. Source S1 is a rela-
tional table storing transactional data about sales and source S2 
consist of a set of files (log-sniffer dumps) containing information 
about sales staff (e.g., status, branch, and working hours). Data 
extracted from both sources use the same transfer channel for 
populating the data transformation area. Source S3 handles data 
from the enterprise’s web portal. Usually, their propagation 
should be done in a streaming fashion, but at different moments 
depending on system’s workload and business requirements it can 
be done through batches of small files as well.  

The transformation part consists of three conceptual flows; each 
one is responsible for the population of a single data warehouse 
table. The top flow essentially populates the customer table in the 
data warehouse with click-stream data captured at the web portal. 
This flow has a pressing requirement for freshness and also, in its 
most frequent configuration, has to deal with streaming input. The 
middle flow depends on data from source S2. Following the land-
ing of that data, the newly inserted and updated records are loaded 
to DW2, which stores information about sales representatives. 
Both the top and middle flows contain a few transformations hid-
den under the load task, which are not discussed here for space 
limitations. The bottom flow that populates the sales fact table is 
fed from both S1 and S2. The data after their landing to the trans-
formation area are compared (Δ transformation) against the pre-
vious landing (snapshot table) for identifying the changed tuples. 
Then, four transformations are applied: a lookup operation (for 
finding corresponding codes from store sites and for verifying the 
moving information as well), a filter (for rejecting tuples contain-
ing null values) and a function operation (for modifying the 
schema), and finally, a surrogate key assignment that replaces the 
transactional keys with surrogate keys. Next, the data populate the 
DW1 table.  

Finally, at the data warehouse site, there exist (in our example 
workflow) three tables and two views defined on top of them. The 
first view, V1, relates customer and sales information (e.g., for 
identifying customers’ status: platinum, gold, and silver). The 
second view, V2, relates sales representatives and sales (e.g., for 
categorizing staff and branches based on their performance). 

Although, at a first glance the above design seems reasonably 
adequate, looking at it from different perspectives reveals various 
optimization opportunities. In the rest, we use the above example 
for a discussion on design tradeoffs among different optimization 
objectives. For assisting the presentation, we present a few illustr-
ative graphs produced for different configurations of the example 
workflow. (We implemented the same workflow in different open 
source and commercial ETL tools; although the behavior and 
performance of these tools differ, the trends discussed in this 
study are alike in the tools we used.) All graphs depict average 
values concerning the best possible configuration in each case, 
unless otherwise stated. We stress that our goal here is to indicate 
the tradeoffs in using different QoX metrics, and not to focus on 
individual numbers. 



 

3.1 Optimization for Performance  
Although performance is the typical optimization objective, still 
with current ETL technology, designs must be optimized in a 
manual, rather ad-hoc way, based on previous practices known to 
the designer. As we discussed, one solution is algebraic optimiza-
tion of the design. Following the idea of moving the most restric-
tive operators to the start of a flow, for the bottom flow of Figure 
3, an option for reducing the data volume will be to move the 
FltNN before the lookup operation; of course the move must be 
valid (the filter does not depend on the lookup) and offer some 
gain (the data do contain null values).  

Another optimization opportunity concerns the parallelization of 
the ETL workflow. Conceptually, this implies two actions: (a) 
assigning more CPU’s (at least more than one) to the ETL execu-
tion and (b) creating multiple flows that run in parallel. Usually, 
both actions should be performed together and that complicates 
the task of automatically tuning this process. In addition, one 
important tuning decision involves whether to parallelize the 
whole ETL flow or parts of it.  

For demonstrating these tradeoffs, we experimented with the ex-
ample of Figure 3 using different execution scenarios involving 
multiple CPUs (from 1 to 8) and different parallelization options 
(see Figure 4). Specifically, we tested 4 configurations: (a) 1PF, 
in which we did not parallelize the ETL process (i.e., this is the 
normal configuration); (b) 4PF-p, in which we parallelized parts 
of the original flow using 4 parallel branches; (c) 4PF-f, in which 
we run the whole ETL flow in 4 branches; and (d) 8PF-p, in 
which we parallelized parts of the flow using 8 parallel flows. 
Some interesting tradeoffs are depicted in Figure 4. The part of 
each bar filled with strong color represents extraction times, whe-
reas the part filled with faded color represents transformation 
times. It is not only that extraction dominates the ETL execution 
in this case; one may observe that the parallelization improves 
more the transformation part in almost all the settings. Also, it 
seems that increasing the processing power does not improve 
performance linearly. Running the whole workflow in parallel is 
not the best solution either. Possible tunings involve the number 
of partitions and which part(s) of the flow run in parallel, as well.  

 

Figure 4. Parallelization effects on ETL design 

Notice that just assigning more processors to an ETL workflow 
(without performing any parallelization) is not optimal. Observe, 
also, Figure 5 (the w/o RP case) where the normal execution of a 
part of the example scenario is not much affected by simply as-
signing more processors; an appropriate parallelization policy is 
required.  

3.2 Optimization for Recoverability and Per-
formance 
As we have discussed, the use of recovery points (RP) –placed in 
various points of the workflow– significantly increases the total 
execution cost since it adds an additional I/O cost. We show this 
by experimenting with the example workflow.  

Figure 5 shows the behavior of the design when we use recovery 
points (w/ RP case) and when we don’t (w/o RP case). In particu-
lar, w/ RP (b) and w/ RP (w) are results for the best and worst poss-
ible configuration, respectively. In this experiment, for isolating 
the impact of recoverability, we did not parallelize the flow; we 
tested the performance of a single flow varying the number of 
processors. The results show that using recovery points increases 
significantly the total cost. In fact, even when the processing 
power increases the w/ RP (b) case is getting much worse than the 
normal case (which performs slightly better), because the threads 
responsible for I/O operations do not exploit caching benefits to 
an adequate extent.   

 

Figure 5. Cost imposed by the use of recovery points  

However, when a failure occurs, the use of recovery points im-
proves performance. Observe Figure 6, where the normal (w/o 
RP) and the w/RP(b) cases of Figure 5 (without failures, w/o f) 
are examined again, this time in the presence of a failure (with 
failure, w/ f). Then, the performance of normal case (w/f, w/o RP) 
is worse than the performance when recovery points are used. 
Still, if a failure occurs near the previous recovery point (w/f, w/ 
RP(b)-n), then, the recovery performs well. Otherwise, if a failure 
occurs at a point far from the previous recovery point (w/f, w/ 
RP(b)-f), then, the recovery does not perform well. (Of course, 
this result depends on the cost of transformations existing be-
tween the failure and the previous recovery points; if the trans-
formations’ cost is fairly small, then the recovery performs bet-
ter.)  

 

Figure 6. Cost in the presence of a failure  



 

Therefore, interesting decision points include the number and the 
placement of the recovery points on the workflow. As we have 
seen, different design choices result in different results (observe 
best and worst cases in Figure 5 and the scenarios of a failure 
occurred near and far from a recovery point in Figure 6).  

However, some heuristics can be used for facilitating such decision. 
One may use a recovery point –e.g., SP1 and/or SP2 in Figure 3– 
just after extraction when the data reach the transformation area or 
after resolving the changes (the exact point is a matter of tuning and 
depends on the specific scenario details). Recall the results of Figure 
4 where the extraction dominates the execution time; when the ex-
traction is that costly, then it definitely makes sense to add a recov-
ery point close to it. Using recovery points after the extraction phase 
assists in more than one way beyond recovery; e.g., as a synchroni-
zation point since not all sources or source data are available at the 
same time. Additionally, since the network channels used between 
the source sites and the transformation area inflict a notion of un-
predictability on the workflow and increase the risk of having a 
failure, one may want to store just after the data transfer depending 
on the reliability of his/her network. On the other hand, regarding 
performance, it is often faster to store first to a flat file and later 
populate a table, instead of hitting the table directly.  

3.3 Optimization for Reliability, Recoverabili-
ty, and Performance  
An alternative to recovery points is to have ETL designs that can 
tolerate such failures; in other words, to design reliable ETL de-
signs. 

An obvious tradeoff involves the reliability versus the performance. 
As the execution time window decreases and especially, as it reach-
es the near real-time case, the option for recovery diminishes. Con-
sider the top flow of our example: the data are coming in fast rates, 
and since we cannot afford to lose any tuple (this is a strict require-
ment in the ETL context [15]), we need either to store them in a 
persistent disk-based data store (e.g., at SP2) or to use a fault-
tolerant method.  

For ensuring the reliability of the process, we may need to relax the 
other objectives’ expectations. If we choose to keep the cost intact, 
we can retain the ETL budget by accepting lower performance stan-
dards. For example, we can use the same resources and instead of 
parallelizing the ETL process (multiple threads handle subsets of the 
data volumes) we can replicate the ETL process (multiple threads 
handle the whole data volume). In that sense, we follow a fail-safe 
design that allows the system to continue operation at a reduced 
level (graceful degradation) and avoids a potential crash of the 
process, when a certain component fails. Typical consequences are a 
reduction in throughput and an increase in execution time. Observe 
Figure 7 where we measured the additional costs that recovery 
points and redundancy impose to the normal execution of the 
workflow. Clearly, redundancy guarantees better performance than 
recovery but the relative improvement depends on the redundancy 
type used. Figure 7 shows average values for n-modular redundancy 
(NMR) that vary from 14% (for triple modular redundancy, TMR) 
to 58% (5-modular redundancy). Of course, as the number of re-
dundant flows increases the reliability of the system increases too 
(the failure probability decreases), but then the system resources are 
shared among a larger number of flows. 

 

Figure 7. Use of recovery points vs. NMR 

An alternative for honoring the performance requirements affects 
the total cost of the process. For example, we can maintain the ex-
ecution of the ETL process to achieve the performance goals, but 
then, we should increase the resources (e.g., number of machines) 
used for executing concurrently the same process multiple times. 

3.4 Optimization for Freshness, Reliability, 
Recoverability, and Performance  
The top flow of Figure 3 needs special care when it involves stream-
ing data and the process is realized in a (near) real-time fashion. At 
the physical level, as we discussed, possible solutions include 
changing the resource allocation, using implementation techniques 
suitable for streaming data, and parallelizing the flow. Since in this 
case the goal is to minimize the latency for updating the target data 
store, we need to increase the frequency of loads (i.e., the frequency 
of ETL executions) in the course of time too.  

However, a requirement for freshness may change the design at 
higher levels as well. Considering the bottom flow, assume that a 
service level agreement requires that the freshness of data in table 
DW1 or in view V1 should be no less than t time units and that at 
the same time, the sources S1 and S2 feed data to the flow at differ-
ent rates (rows/sec) (S1 provides data faster than S2). Having that 
knowledge, a possible solution is to create three different flows for 
populating the middle and bottom flows. The middle flow should 
have its own link to the source S2 to avoid further delaying the bot-
tom flow. Then, the bottom flow can be replaced by two new flows, 
a faster and a slower, each one corresponding to a different source. 
With such change that can be captured even at the conceptual or 
logical levels, we can improve the freshness of data in DW1 and in 
V1 (the other branch that feeds it is the real-time one). Similarly, we 
can work for the recoverability of the process; the flow having more 
pressing requirement for freshness may use replication, while the 
other may use recovery points. 

Observe Figure 8 that shows the propagation of a certain data vo-
lume to the target data store using various design configurations. 
The configurations tested involve running the process in 2 parallel 
flows without any recovery (w/o RP, 2PF), using redundancy 
(TMR), using a small (RP+) and a larger (RP++) number of recov-
ery points, and executing the process without recovery points, re-
dundancy and parallelization (w/o RP, 1F). The y-axis in Figure 8 
shows the time needed for propagating a change occurred at the 
source to the target data store. As the number of loads per time unit 
(e.g., per day) increases (and the data are processed in batches of 
smaller size) the freshness of the data warehouse gets improved. 
However, each configuration shows  



 

 
Figure 8. Freshness of data vs. frequency of ETL execution 

different results. Therefore, the designer should choose according to 
the requirements for the design; for example, the parallelized ver-
sion should be preferred when only performance matters, but to 
cope with failures the TMR is more appealing.   

3.5 Optimization for Other QoX Metrics 
In addition, the maintainability of the flow depicted in Figure 3 can 
be improved. An ETL workflow can be represented as a directed 
graph; its nodes are the data stores and ETL operations of the 
workflow. Observe that most of the nodes (e.g., ETL operations) of 
our example workflow depend on one node and feed another one. 
However, the Δ transformation depends on three nodes (i.e., the 
three sources) and many nodes depend on it (i.e., observe the two 
flows starting from Δ and the SP1 recovery point). That makes the Δ 
transformation a vulnerable point of the design [16]. If we follow 
the suggestion of replacing the middle and bottom flows with three 
new flows starting from the respective sources, then this problem 
will be resolved. In addition, the workflow complexity gets im-
proved, but the modularity and size of the workflow are affected 
negatively (e.g., parts of the workflow perform identical tasks). 

From another perspective, one may choose to increase the workflow 
complexity and the data volumes by enriching the data flow with 
extra information useful for provenance purposes. In doing so, at 
least the performance, freshness, complexity, and in some extent the 
auditability of the system are hurt, but the traceability gains ground. 

4. CONCLUSIONS 
In this paper, we have addressed the problem of dealing with mul-
tiple quality and optimization objectives in an ETL design. Existing 
research and commercial solutions focus mainly on performance, 
while practice shows that other metrics like recoverability, reliabili-
ty, maintainability, freshness, scalability, availability, flexibility, 
robustness, and so on, are also of great interest. In fact, since current 
solutions neither capture nor track such qualities, the consulting and 
designing teams have to revisit and complement the designs at later 
points. Naturally, this process increases the consulting and thus, the 
overall cost of the ETL design. We have presented the QoX metric 
suite that aims at handling such metrics in all the ETL design levels. 
We have discussed the interrelationships and dependencies among 
the metrics that lead to tradeoffs for alternative optimizations of 
ETL processes. Another challenge is creating tools to automate the 
optimization, which is a topic we are working on. 

The QoX metric suite is extensible to other metrics. It can work on 
top of any ETL engine that provides export and import capabilities 
(e.g., the metadata of an ETL workflow can be exported as or im-

ported from an XML file). Additionally, our approach is agnostic to 
any particular implementation style, e.g., ETL, ELT, ELTL, ETLT. 
We are not tying ourselves to a specific product; rather, we are 
creating a consulting solution for creating ETL designs that are 
optimal for the customer's QoX requirements, for optimizing exist-
ing ETL designs for QoX metrics, and for evaluating the cost of a 
given ETL design. 
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